Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Complete k-ary trees and Hamming graphs
 
  • Details
Options

Complete k-ary trees and Hamming graphs

Date Issued
01-10-2009
Author(s)
Choudum, S. A.
Lavanya, S.
Abstract
A Hamming graph H(b, n)of base b and dimension n has vertex set {X = x 1x2 ...xn : xi ∈{0,1,...,b - 1},for 1 ≤ i ≤ n} and edge set {(X,Y): X and Y differ in exactly one bit position}.In this paper, we are concerned with the following problem: Given positive integers b, k and h, what is the minimum integer m = m(b,k,h) such that the complete k-ary tree, Thk, of height h, is a subgraph of H(b, m)? The value m(b, k, h) is known for very few values of b, k and h. We show that (i) m(k, k,h) = h + 1, for every k ≥ 3, (ii) (log 32)(h+l)⌉≤m(3,2,h)≤ ̧2/3(h+l)⌉, (iii) h+l/log2 b < m(b, 2,h) < h+l/&ifloor;log2 b⌋, for every b ≠ 2l,and that (iv) h+l/log2b ≤ m(b, 2,h) ≤ h+2/log2 b for every b = 2l.
Volume
45
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback