Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Shift invariant spaces on compact groups
 
  • Details
Options

Shift invariant spaces on compact groups

Date Issued
01-06-2013
Author(s)
Radha R 
Indian Institute of Technology, Madras
Shravan Kumar, N.
DOI
10.1016/j.bulsci.2012.11.003
Abstract
We study the theory of shift invariant spaces in L2(G), where G is a compact group. We define a range function and show that a relation between an H-invariant space and the range function is valid as in the case of abelian group setting. Here H is assumed to be a closed normal subgroup of G. We also obtain a decomposition for an H-invariant space in terms of principle H-invariant spaces whose generators give rise to "generalized Parseval frames" and use this result to study H-preserving operators. © 2012 Elsevier Masson SAS.
Volume
137
Subjects
  • Compact groups

  • H-invariant spaces

  • H-preserving operator...

  • Parseval frame

  • Range functions

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback