Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Strength–Ductility Synergy in High Entropy Alloys by Tuning the Thermo-Mechanical Process Parameters: A Comprehensive Review
 
  • Details
Options

Strength–Ductility Synergy in High Entropy Alloys by Tuning the Thermo-Mechanical Process Parameters: A Comprehensive Review

Date Issued
01-01-2022
Author(s)
Sabban, Rushikesh
Dash, K.
Suwas, S.
Murty, B. S.
DOI
10.1007/s41745-022-00299-9
Abstract
The strength–ductility trade-off is an eminent factor in deciding the mechanical performance of a material with regard to specific applications. The strength–ductility synergy is generally inadequate in as-synthesized high entropy alloys (HEAs); however, it can be tailored owing to its tunable microstructure and phase stability. Thermo-mechanical processing (TMP) allows the microstructure to be tailored to achieve desired strength–ductility combination. The additional attribute is evolution of texture, which also significantly influences the mechanical properties. This review presents a critical insight into the role of TMP to achieve superior strength–ductility symbiosis at room temperature in single-phase (FCC, BCC) and multiphase HEA. The role of overall processing strategy of HEAs encompassing rolling and subsequent annealing in relation to the evolution of microstructure and texture in have been discussed. Recently practiced severe plastic deformation processes have also shown promise in improving the strength–ductility combination. The relevance of these processes in the processing of HEAs has also been analysed. At the end, futuristic approaches have been elaborated to enable efficient as well as hassle-free process towards achieving the proficiency of strength–ductility in HEAs.
Volume
102
Subjects
  • High entropy alloy

  • Microstructure

  • Rolling

  • Strength–ductility sy...

  • Texture

  • Thermo-mechanical pro...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback