Options
Isolation, growth kinetics, and immunophenotypic characterization of adult human cardiac progenitor cells
Date Issued
01-03-2021
Author(s)
Rallapalli, Suneel
Guhathakurta, Soma
Korrapati, Purna S.
Abstract
The discovery of cardiac progenitor cells (CPCs) has raised expectations for the development of cell-based therapy of the heart. Although cell therapy is emerging as a novel treatment for heart failure, several issues still exist concerning an unambiguous definition of the phenotype of CPC types. There is a need to define and validate the methods for the generation of quality CPC populations used in cell therapy applications. Considering the critical roles of cardiac cell progenitors in cellular therapy, we speculate that long term culture might modulate the immunophenotypes of CPCs. Hence, a strategy to validate the isolation and cell culture expansion of cardiac cell populations was devised. Isolation of three subpopulations of human CPCs was done from a single tissue sample using explant, enzymatic isolation, and c-kit+ immunomagnetic sorting methods. The study assessed the effects of ex vivo expansion on proliferation, immunophenotypes, and differentiation of CPCs. Additionally, we report that an explant culture can take over 2 months to achieve similar cell yields, and cell sorting requires a much larger starting population to match this expansion time frame. In comparison, an enzymatic method is expected to yield equivalent quantities of CPCs in 2–3 weeks, notably at a significantly lower cost, which may intensify their use in therapeutic approaches. We determined that ex vivo expansion caused changes in cellular characteristics, and hence propose validated molecular signatures should be established to evaluate the impact of ex vivo expansion for a safe cell therapy product.
Volume
236