Options
Studies on magneto conductance of nickel substituted FeSi
Date Issued
15-02-2018
Author(s)
Krishnan, M.
Mishra, Ashish
Singh, Durgesh
Yadam, Sankararao
Venkatesh, R.
Gangrade, Mohan
Ganesan, V.
Abstract
Structural and electrical transport properties of Nickel (Ni) doped FeSi at low temperatures in the presence of zero and high magnetic fields are investigated systematically and reported. FeSi is a material known for its high thermoelectric power. Metal-Insulator Transition in FeSi is always an exotic one with different ground states depending upon the substituent. Changes in Magneto Resistance (MR) at low temperatures are explained by invoking an interplay between Weak Localization (WL) and enhanced Electron-Electron Interaction (EEI) that evolved upon varying the nickel concentrations. Competing interactions between WL and EEI along with Kondo hybridization scenario may classify this system into an exotic one among doped semiconductors. Temperature dependent zero field resistivity is analyzed in the light of various scattering mechanism in different doping regimes at low temperatures. Different crossover regimes are explained by invoking carriers and magnetic moments induced by the Ni impurity in an otherwise non-magnetic Kondo Insulator (KI).
Volume
448