Options
An efficient meshfree method for fracture analysis of cracks in BI-materials
Date Issued
29-11-2006
Author(s)
Nandulal, B.
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Abstract
This paper presents an enriched meshless method based on an improved moving least-square approximation (IMLS) method for fracture analysis of cracks in homogeneous, isotropic, linear-elastic, two-dimensional bimaterial solids, subject to mixed-mode loading conditions. The method involves an element-free Galerkin formulation in conjunction with IMLS and a new enriched basis functions to capture the singularity field in linear-elastic bi-material fracture mechanics. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill-conditioned system of equations. The proposed enriched basis function can be viewed as a generalized enriched basis function, which degenerates to a linear-elastic basis function when the bimaterial constant is zero. Numerical examples are presented to illustrate the computational efficiency and accuracy of the proposed method. Copyright © 2006 by ASME.
Volume
2006