Options
Synthesis of landing dynamics on land-base high performance aircraft considering multi-variate landing conditions
Date Issued
01-01-2021
Author(s)
Suresh, P. S.
Sura, Niranjan K.
Shankar, K.
Radhakrishnan, G.
Abstract
Consideration of standard landing cases from technical guideline document is the traditional design practice followed to ascertain aircraft landing loads. A rationale approach on landing load generation and its impact on flexible airframe dynamic response is explored, considering multi-variate landing conditions for the first time on land-base high performance aircraft. Methodology on nonlinear landing dynamic response simulation is developed by amalgamating inputs such as nonlinear nose and main landing gear dynamic models, aircraft rigid body dynamics, low speed aerodynamic and thrust forces. True representation of landing gear nonlinear oleo-pneumatic strut and tire characteristics, variable geometric strut structural stiffness and nonlinear spin-up friction resulted in satisfactory correlation of vertical and longitudinal dynamic response simulation with experimental drop test results. The adequacy of lateral dynamic model is established from the compatibility condition of landing gear and tire dynamics. A down selection methodology is worked out considering total probability and first order sensitive multi-variate landing parameters such as pitch, roll and vertical descent speed, taking into account the plausible statistical variation. Transient dynamic response simulation is then performed for the critical landing cases, on a flexible airframe finite element model by inputting landing load time history as base excitation motion. The dynamic amplification of acceleration response on flexible fuselage nose location from the simulation, is verified with flight data accelerometer frequency response. The application of flexible dynamic responses in ensuring the structural integrity of airframe is elaborated. The proposed methodology on landing load generation is pragmatic, in comparison with the traditional design practice and provides insight during early design phase thereby achieving landing gear subsystem development in-unison with airframe structural clearance aspects.