Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. A data driven approach to model thermal boundary resistance from molecular dynamics simulations
 
  • Details
Options

A data driven approach to model thermal boundary resistance from molecular dynamics simulations

Date Issued
10-01-2023
Author(s)
Anandakrishnan, Abhijith
Sarith P Sathian 
Indian Institute of Technology, Madras
DOI
10.1039/d2cp04551f
Abstract
A new method is proposed to model the thermal boundary resistance (TBR) at the nanoscale, solid-liquid interface from macroscopic observables that characterize a nanoscale interface. We correlated the TBR with thermodynamic state variables, material properties, and geometric parameters to derive a generalized relationship with the help of data-driven heuristic algorithms. The results show that TBR can be expressed in terms of physical observables of the systems and material-specific parameters. We investigated the mutual independence of descriptor variables and quantified the weightage for each observable parameter in the TBR models. The interfacial liquid layering has a robust correlation with TBR. However, for systems with phonon size effects and under extreme thermodynamic conditions, the work of adhesion and system geometry also affects the variation in TBR. The data-driven approach followed in this study helps us gain better insight into the mechanism of TBR at nanoscale solid-liquid interfaces and shows significant improvement in our knowledge about interfacial thermal transport.
Volume
25
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback