Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Exploring Physics-Informed Neural Networks for Compressible Flow Prediction
 
  • Details
Options

Exploring Physics-Informed Neural Networks for Compressible Flow Prediction

Date Issued
01-01-2021
Author(s)
Chaudhari, M.
Kulkarni, I.
Damodaran, M.
DOI
10.1007/978-981-15-5183-3_34
Abstract
This work aims to understand the impact of hyperparameters of neural networks on the capability of physics-informed neural network (PINN) surrogates for compressible flow predictions and how they compare with traditional neural network (NN) surrogates by considering steady inviscid compressible flow in a 1-D converging–diverging nozzle subjected to different back pressures. Both NN and PINN are trained with known random flow characteristics estimated using analytical and computational methods corresponding to a set of back pressures and used to predict flow characteristics corresponding to arbitrary back pressures which are not in the training dataset.
Subjects
  • Compressible nozzle f...

  • Highly nonlinear flow...

  • Physics-informed neur...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback