Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Enhanced electromechanical response of nonpercolating polymer-nanoparticle composite films
 
  • Details
Options

Enhanced electromechanical response of nonpercolating polymer-nanoparticle composite films

Date Issued
04-07-2008
Author(s)
Mainwaring, David
Murugaraj, Pandiyan
Mora-Huertas, Nelson
K Sethupathi 
Indian Institute of Technology, Madras
DOI
10.1063/1.2937093
Abstract
We have prepared semiconducting carbon nanoparticle polyimide composite thin film with spatially distributed localized energy states exhibiting three-dimensional variable range hopping electron transport. Applied strain (compression or extensional) introduces proportional variations in the spacing between these energy states, as demonstrated in the linear variation of measured electrical resistance. The electromechanical sensitivity is the same in both deformation modes due to this underlying operating mechanism, enabling quantitative measurement of torsional deformations also. Electrical responses across all deformation modes remained in phase with applied strain indicating negligible hysteresis and an ability to operate over a wide strain ranges up to 40 000 microstrains. © 2008 American Institute of Physics.
Volume
92
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback