Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Characterization and phase transition study of a versatile molecular gel from a glucose-triazole-hydrogenated cardanol conjugate
 
  • Details
Options

Characterization and phase transition study of a versatile molecular gel from a glucose-triazole-hydrogenated cardanol conjugate

Date Issued
11-03-2014
Author(s)
Surya Prakash Rao, H.
Kamalraj, M.
Swain, Jitendriya
Ashok Kumar Mishra 
Indian Institute of Technology, Madras
DOI
10.1039/c3ra47540a
Abstract
The synthesis and gelation properties of a structurally simple, renewable-resource-based glucose-triazole-hydrogenated cardanol conjugate (GTHCC) are reported. The conjugation of hydrogenated cardanol and glucose was done using a triazole linker employing copper(i) mediated acetylene azide cycloaddition 'click' chemistry in the key step. The GTHCC was found to form four different classes of gels; namely, (i) hydrogel from aqueous-protic solvents, (ii) organogel from non-polar solvents, (iii) gel from vegetable oil and (iv) gel from petroleum oil. In a water-methanol (1:1) mixture, the conjugate acted as a stable thermoreversible supergelator, even at a very low gelator concentration of 0.03% w/v. Unlike glycoside-based gels derived from hydrogenated cardanol and glucose, the GTHCC is stable under acidic as well as basic conditions, owing to the covalent linkages in the tether. The intrinsic fluorescence of the hydrogel was found to be sensitive towards a gel-sol transition. © 2014 The Royal Society of Chemistry.
Volume
4
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback