Options
Shape preservation of scientific data through rational fractal splines
Date Issued
01-01-2014
Author(s)
Abstract
Fractal interpolation is a modern technique in approximation theory to fit and analyze scientific data. We develop a new class of C1- rational cubic fractal interpolation functions, where the associated iterated function system uses rational functions of the form (Formula presented.) where pi(x) and qi(x) are cubic polynomials involving two shape parameters. The rational cubic iterated function system scheme provides an additional freedom over the classical rational cubic interpolants due to the presence of the scaling factors and shape parameters. The classical rational cubic functions are obtained as a special case of the developed fractal interpolants. An upper bound of the uniform error of the rational cubic fractal interpolation function with an original function in C2 is deduced for the convergence results. The rational fractal scheme is computationally economical, very much local, moderately local or global depending on the scaling factors and shape parameters. Appropriate restrictions on the scaling factors and shape parameters give sufficient conditions for a shape preserving rational cubic fractal interpolation function so that it is monotonic, positive, and convex if the data set is monotonic, positive, and convex, respectively. A visual illustration of the shape preserving fractal curves is provided to support our theoretical results. © 2013 Springer-Verlag Italia.
Volume
51