Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Differential flatness based LQR control of a magnetorheological damper in a quarter car semi-active suspension system
 
  • Details
Options

Differential flatness based LQR control of a magnetorheological damper in a quarter car semi-active suspension system

Date Issued
01-07-2020
Author(s)
Diwakar, Aneesh D.
Manivannan, P. V. 
Indian Institute of Technology, Madras
DOI
10.18178/ijmerr.9.7.998-1006
Abstract
Semi-active suspension is widely used in automotive applications, as it is providing good ride quality at reasonably low cost. Among the various methods available for enhancing ride comfort, magnetorheological (MR) suspension has drawn much attention due to its robustness and fail-safe nature as compared to electrorheological suspension. In semi-active suspension, the damping coefficient of the MR damper is varied by modulating the current supplied to damper coil. In the present work, a quarter car with semi-active suspension system is modeled and its performance is studied through simulation under the MATLAB / Simulink environment. A hybrid control algorithm consisting of differential flatness along with LQR (linear quadratic regulator) is proposed to vary the current input for the magnetorheological damper for reducing the sprung mass acceleration, jerk and to improve ride quality. The simulation results also show that the performance of semi-active suspension that uses magnetorheological damper along with developed hybrid algorithm is superior to the LQR controlled suspension, when subjected to random road profiles.
Volume
9
Subjects
  • Differential flatness...

  • LQR

  • Magnetorheological

  • Ride comfort

  • Semi-active suspensio...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback