Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. A clustering based social matrix factorization technique for personalized recommender systems
 
  • Details
Options

A clustering based social matrix factorization technique for personalized recommender systems

Date Issued
01-01-2018
Author(s)
Divyaa, L. R.
Tamhane, Aniruddha
Pervin, Nargis 
Indian Institute of Technology, Madras
Abstract
Recently, a new paradigm of social network based recommendation approach has emerged wherein structural features from social network turned out to be an effective measure to improve the efficacy of the algorithms. However, these approaches assume a user is impacted by all his social connections and completely ignore their preferential similarity, which is crucial for personalized recommendations. Herein, we address this pivotal issue and propose a two-stage clustering based matrix-factorization algorithm, "Cluster REfinement on Preference Embedded MF (CREPE MF)" using a subgraph of social network that integrates the preferential similarity score. Clustering has been applied first on the user followed by the item based on ratings. The proposed algorithm has been systematically evaluated with state-of-the-art algorithms in terms of prediction accuracy and runtime complexity using real-world Yelp dataset. Gratifyingly, our approach outperforms the state-of-the-art algorithms with up to 12.97% and 29.60% improvements in RMSE and runtime, respectively.
Subjects
  • Personalized recommen...

  • Preference network

  • Probabilistic matrix ...

  • Recommender system

  • Social network

  • Two-stage clustering

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback