Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. A finite control set model predictive controller for single-phase transformerless T-type dynamic voltage restorer
 
  • Details
Options

A finite control set model predictive controller for single-phase transformerless T-type dynamic voltage restorer

Date Issued
01-04-2023
Author(s)
Rajkumar, Kodari
Grimm, Ferdinand
Parthiban, P.
Baghdadi, Mehdi
Lokesh, Nalla
DOI
10.1007/s00202-022-01731-0
Abstract
This paper presents a five-level T-type multilevel inverter (MLI) with a finite control set model predictive control (FCS-MPC) scheme for a single-phase transformerless dynamic voltage restorer (DVR). Typical two-level voltage source inverters are not suitable for high-power and medium-voltage applications due to high dv/dt, large size, and high cost of the filter, as well as high voltage stress on all switches. To overcome these issues, a reduced switch count T-type MLI-based transformerless DVR is proposed. The literature does not yet describe an FCS-MPC control scheme for transformerless T-type DVR. The FCS-MPC controller predicts the future of the trajectory of the controlled variables based on a prediction model. The optimal state is then selected using a cost function that is formed by combining predicted and reference variables. The proposed control technique minimizes the total harmonic distortion to a very low value compared to a linear PI controller. In addition, this control scheme is not dependent on a modulation scheme and linear control technique. The proposed system is validated by both simulation and experimental results.
Volume
105
Subjects
  • Finite control set mo...

  • Harmonics

  • T-type multilevel inv...

  • Transformerless dynam...

  • Voltage sag/swell

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback