Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Thin Newtonian film flow down a porous inclined plane: Stability analysis
 
  • Details
Options

Thin Newtonian film flow down a porous inclined plane: Stability analysis

Date Issued
01-01-2008
Author(s)
Sadiq, I. R.
Usha R 
Indian Institute of Technology, Madras
DOI
10.1063/1.2841363
Abstract
The flow of a thin Newtonian fluid layer on a porous inclined plane is considered. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. It is assumed that the flow through the porous medium is governed by Darcy's law. The critical conditions for the onset of instability of a fluid layer flowing down an inclined porous wall, when the characteristic length scale of the pore space is much smaller than the depth of the fluid layer above, are obtained. The results of the linear stability analysis reveal that the film flow system on a porous inclined plane is more unstable than that on a rigid inclined plane and that increasing the permeability of the porous medium enhances the destabilizing effect. A weakly nonlinear stability analysis by the method of multiple scales shows that there is a range of wave numbers with a supercritical bifurcation, and a range of larger wave numbers with a subcritical bifurcation. Numerical solution of the evolution equation in a periodic domain indicates the existence of permanent finite-amplitude waves of different kinds in the supercritical stable region. The long-time waveforms are either time-independent waves of permanent form that propagate or time-dependent modes that oscillate slightly in the amplitude. The presence of the porous substrate promotes this oscillatory behavior. The results show that the shape and amplitude of the waves are influenced by the permeability of the porous medium. © 2008 American Institute of Physics.
Volume
20
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback