Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. PADA: Pruning Assisted Domain Adaptation for Self-Supervised Speech Representations
 
  • Details
Options

PADA: Pruning Assisted Domain Adaptation for Self-Supervised Speech Representations

Date Issued
01-01-2023
Author(s)
Lodagala, Vasista Sai
Ghosh, Sreyan
Umesh Srinivasan 
Indian Institute of Technology, Madras
DOI
10.1109/SLT54892.2023.10022820
Abstract
While self-supervised speech representation learning (SSL) models serve a variety of downstream tasks, these models have been observed to overfit to the domain from which the unlabeled data originates. To alleviate this issue, we propose PADA (Pruning Assisted Domain Adaptation). Before performing the target-domain ASR fine-tuning, we discover the redundant weights from pre-trained wav2vec 2.0 models through various pruning strategies. We investigate the effect of Task-Agnostic and Task-Aware pruning and propose a new pruning paradigm called, Cross-Domain Task-Aware Pruning (CD-TAW). CD-TAW obtains the initial pruning mask from a well fine-tuned out-of-domain (OOD) model, thereby making use of the readily available fine-tuned models from the web. The proposed CD-TAW method achieves up to 20.6% relative WER improvement over our baseline when fine-tuned on a 2-hour subset of Switchboard data without language model (LM) decoding.
Subjects
  • automatic speech reco...

  • domain adaptation

  • pruning

  • self-supervised learn...

  • telephone speech

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback