Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Empirical Detection of Time Scales in LTI Systems using Sparse Optimization Techniques
 
  • Details
Options

Empirical Detection of Time Scales in LTI Systems using Sparse Optimization Techniques

Date Issued
01-10-2018
Author(s)
Pinnamaraju, Vivek S.
Tangirala, Arun K. 
Indian Institute of Technology, Madras
DOI
10.1109/LCSYS.2018.2844380
Abstract
Identification and control of systems with multiple time scales is in general known to be quite challenging than that of single scale systems. The foremost and crucial step in the development of any method for data-driven multiscale analysis is to determine whether the system warrants a multiscale treatment or otherwise. Existing works in the associated literature either assume that this non-trivial knowledge is readily available or do not necessarily assess the need for a multiscale analysis. This letter is aimed at addressing this fundamental issue. The main objectives of this letter are to develop a method for: 1) detecting the presence and 2) counting the number of time scales for linear time-invariant systems solely from input-output data. The problem is formulated in the sparse optimization framework with a non-orthogonal dictionary consisting of filtered inputs resulting from finite-order Laguerre basis filter expansions of transfer functions over a highly redundant pole grid. A clustering of the most informative poles selected by the sparse optimizer reveals the presence of multiscale nature and aids in the cardinality of time scales. The proposed method can be applied to multi-input, multi-output systems under open-loop conditions. Simulation studies demonstrate the success of the proposed methodology.
Volume
2
Subjects
  • identification

  • Laguerre filters

  • Linear systems

  • sparse optimization

  • time scales

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback