Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Selective carbon fiber reinforced nylon 66 spur gears: Development and performance
 
  • Details
Options

Selective carbon fiber reinforced nylon 66 spur gears: Development and performance

Date Issued
01-01-2006
Author(s)
Senthilvelan, S.
R Gnanamoorthy 
Indian Institute of Technology, Madras
DOI
10.1007/s10443-005-9003-6
Abstract
A new design methodology is developed to mold the polymer spur gears with high strength fiber reinforcement only in the highly stressed region. High performance high cost short carbon fiber reinforced Nylon 66 is used in the highly stressed tooth region and low cost unreinforced Nylon 66 is used in the hub region. Two different geometries, circular and spline shaped hubs were used for developing the selective reinforced gears by multi-shot injection-molding process. Joint strength of the selectively reinforced gear was estimated using shear tests. Clear hub and tooth region separation without any distortion was observed in joint shear tests. A molten material due to fusion bonding was observed at the interfaces. The joint strength was also evaluated by conducting gear fatigue tests using a power absorption test rig at various torque levels and at a constant gear rotational speed. Monolithic reinforced gear and selective reinforced gears with spline hub exhibited similar fatigue behavior. The failure mode depends upon the test torque level. The selective reinforced gears with circular hub showed joint failures at high-test torque levels. Absence of mechanical interlocking feature in the circular hub geometry contributes to the joint failure. Thermal bond, part interference and mechanical interlocking feature provide sufficient joint strength to the selective reinforced gear with spline hub. © Springer 2006.
Volume
13
Subjects
  • Failure analysis

  • Gear

  • Injection molding

  • Joint strength

  • Selective reinforceme...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback