Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication14
  4. Switching thresholds in MTJ using SPICE model - Effects of spin and Ampere torques
 
  • Details
Options

Switching thresholds in MTJ using SPICE model - Effects of spin and Ampere torques

Date Issued
2008
Author(s)
Malathi, M
Prabhakar, A
DOI
10.1002/pssa.200723473
Abstract
Spin torque due to spin polarized tunneling current can be used to switch the free layer in a magnetic tunnel junction (MTJ). This current also gives rise to an Ampere torque, which influences the switching threshold of the MTJ. We modified the Landau-Lifschitz-Gilbert equation (LLGE) to include an Ampere torque term and solved for the magnetization dynamics under the single domain approximation using a linear solver in SPICE. We also extend the model to a square array of MTJs to study the effect of nearest neighbour interactions in addition to effects like demagnetization and magnetostatic interactions with the pinned layer. The interlayer exchange field between the free and pinned layers of a MTJ and the spin torque are competing factors that decide the threshold current density for switching the MTJ. We used a two current model to study the effects of barrier height and barrier-thickness on spin torque and exchange energy. We observe that both the spin torque and exchange energy decrease with an increase in barrier height (for ferromagnetic coupling) and barrier thickness. We find that the inclusion of Ampere torque causes a reduction in the switching current. Varying the thickness of MgO and Al2O3 barriers allows us to minimize the switching threshold voltage. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volume
205
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback