Options
Hidden geometry of traffic jamming
Date Issued
28-05-2015
Author(s)
Abstract
We introduce an approach based on algebraic topological methods that allow an accurate characterization of jamming in dynamical systems with queues. As a prototype system, we analyze the traffic of information packets with navigation and queuing at nodes on a network substrate in distinct dynamical regimes. A temporal sequence of traffic density fluctuations is mapped onto a mathematical graph in which each vertex denotes one dynamical state of the system. The coupling complexity between these states is revealed by classifying agglomerates of high-dimensional cliques that are intermingled at different topological levels and quantified by a set of geometrical and entropy measures. The free-flow, jamming, and congested traffic regimes result in graphs of different structure, while the largest geometrical complexity and minimum entropy mark the edge of the jamming region.
Volume
91