Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Stochastic model order reduction in randomly parametered linear dynamical systems
 
  • Details
Options

Stochastic model order reduction in randomly parametered linear dynamical systems

Date Issued
01-11-2017
Author(s)
Lal, Hridya P.
Sarkar, Sunetra 
Indian Institute of Technology, Madras
Gupta, Sayan 
Indian Institute of Technology, Madras
DOI
10.1016/j.apm.2017.07.043
Abstract
This study focuses on the development of reduced order models for stochastic analysis of complex large ordered linear dynamical systems with parametric uncertainties, with an aim to reduce the computational costs without compromising on the accuracy of the solution. Here, a twin approach to model order reduction is adopted. A reduction in the state space dimension is first achieved through system equivalent reduction expansion process which involves linear transformations that couple the effects of state space truncation in conjunction with normal mode approximations. These developments are subsequently extended to the stochastic case by projecting the uncertain parameters into the Hilbert subspace and obtaining a solution of the random eigenvalue problem using polynomial chaos expansion. Reduction in the stochastic dimension is achieved by retaining only the dominant stochastic modes in the basis space. The proposed developments enable building surrogate models for complex large ordered stochastically parametered dynamical systems which lead to accurate predictions at significantly reduced computational costs.
Volume
51
Subjects
  • Linear systems

  • Modal analysis

  • Polynomial chaos

  • Random eigenvalue pro...

  • Reduced order models

  • System equivalent red...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback