Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. Component fault localization using switching current measurements
 
  • Details
Options

Component fault localization using switching current measurements

Date Issued
22-07-2016
Author(s)
Potluri, Seetal
Trinadh, A. Satya
Saraf, Siddhant
Veezhinathan Kamakoti 
Indian Institute of Technology, Madras
DOI
10.1109/ETS.2016.7519322
Abstract
Conventional manufacturing/system tests point to a set of logically equivalent faults and not the exact fault within a faulty component. In this paper, we show that during testing, measuring the current drawn by a faulty component aids in identifying the exact manifested fault within it. We propose to partition the chip's power grid based on the chip's component partitions, and dedicate a external supply pin to each component partition. In order to minimize the cost associated with the external measurement circuitry, we reuse the scan resources available within the flip-flop to repeatedly apply the desired test-pattern pair, so that the average current measured during the launch-to-capture window, is equal to the same over a long period of time. The proposed technique is validated by simulating the power-grid and the modified flip-flop using SPICE circuit simulator. The proposed technique, when applied to several component benchmark circuits, helped to localize almost all the logically equivalent faults.
Volume
2016-July
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback