Options
Cyclic-AMP response element binding protein (CREB) and microRNA miR-29b regulate renalase gene expression under catecholamine excess conditions
Date Issued
01-09-2023
Author(s)
Iyer, Dhanya R.
Arige, Vikas
Ananthamohan, Kalyani
Sundaramurthy, Venkatasubramaniam
Tokinoya, Katsuyuki
Aoki, Kai
Kurtz, C. Lisa
Sethupathy, Praveen
Takekoshi, Kazuhiro
Indian Institute of Technology, Madras
Abstract
Aims: Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. Materials and methods: Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. Key findings: CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproterenol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. Significance: This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.
Volume
328