Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Parasitic Inductance and Capacitance-Assisted Active Gate Driving Technique to Minimize Switching Loss of SiC MOSFET
 
  • Details
Options

Parasitic Inductance and Capacitance-Assisted Active Gate Driving Technique to Minimize Switching Loss of SiC MOSFET

Date Issued
01-10-2017
Author(s)
Nayak, Parthasarathy
Hatua, Kamalesh 
Indian Institute of Technology, Madras
DOI
10.1109/TIE.2017.2711512
Abstract
High di/dt and dv/dt of SiC MOSFET cause a considerable amount of overshoot in device voltage and current during switching transients in the presence of inverter layout parasitic inductance and load parasitic capacitance. The excessive overshoots in device voltage and current cause failure of the device. Moreover, these uncontrolled overshoots increase the switching loss in the inverter. It is difficult to reduce parasitic inductance beyond a certain point. This paper proposes an active gate driving technique, which allows inverter to operate with moderate amount of layout parasitic inductance and load parasitic capacitance. The proposed technique dramatically reduces switching loss of the SiC MOSFET with the help of existing parasitic elements. The proposed switching loss reduction technique is termed as quasi zero switching. The developed active gate driver has been tested in a double pulse test setup and a 10 kW two-level voltage source inverter driving an induction motor.
Volume
64
Subjects
  • Active gate driver

  • double pulse (DP) tes...

  • induction motor drive...

  • SiC MOSFET

  • switching loss

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback