Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography
 
  • Details
Options

Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography

Date Issued
01-07-2013
Author(s)
Pradeep konda Gokuldoss 
Indian Institute of Technology, Madras
Wanderka, N.
Choi, P.
Banhart, J.
Murty, B. S.
Raabe, D.
DOI
10.1016/j.actamat.2013.04.059
Abstract
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600 C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc-bcc solid solution but instead a composite of bcc structured Ni-Al-, Cr-Fe- and Fe-Cr-based regions and of fcc Cu-Zn-based regions. The Cu-Zn-rich phase has 30 at.% Zn α-brass composition. It segregates predominantly along grain boundaries thereby stabilizing the nanocrystalline microstructure and preventing grain growth. The Cr- and Fe-rich bcc regions were presumably formed by spinodal decomposition of a Cr-Fe phase that was inherited from the hot compacted state. The Ni-Al phase remains stable even after hot compaction and forms the dominant bcc matrix phase. The crystallite sizes are in the range of 20-30 nm as determined by transmission electron microscopy. The hot compacted alloy exhibited very high hardness of 870 ± 10 HV. The results reveal that phase decomposition rather than homogeneous mixing is prevalent in this alloy. Hence, our current observations fail to justify the present high-entropy alloy design concept. Therefore, a strategy guided more by structure and thermodynamics for designing high-entropy alloys is encouraged as a pathway towards exploiting the solid-solution and stability idea inherent in this concept. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Volume
61
Subjects
  • Atom probe tomography...

  • High-entropy alloy

  • Mechanical alloying

  • Nanocrystalline

  • Solid solution

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback