Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. An experimental and crystal plasticity investigation of anisotropic compression behaviour of Mg-Sn-Ca alloy
 
  • Details
Options

An experimental and crystal plasticity investigation of anisotropic compression behaviour of Mg-Sn-Ca alloy

Date Issued
25-05-2023
Author(s)
Paramatmuni, Chaitanya
Bandi, Anil
Anand Krishna Kanjarla 
Indian Institute of Technology, Madras
DOI
10.1016/j.jallcom.2023.169163
Abstract
The ductility of Magnesium alloys is often limited due to the strong basal texture. Initial attempts were made to reduce the intensity of the basal textures by adding rare earth(RE) elements. However, owing to the cost and scarcity of RE elements, alloys with calcium and tin were recently introduced. Among them, Mg-2Sn-2Ca alloys are the most promising, with high strength reported in the extruded condition. In this work, we report, for the first time, the mechanical properties of the alloy in the sheet form. In plane mechanical anisotropy in compressive behaviour is studied along with the detailed characterisation of texture, microstructure and the deformation twins in the material. Unlike strongly basal textured Mg alloys, deformation twinning was also observed in samples loaded along the normal direction. Crystal plasticity simulations were performed to confirm the slip and twin activity. Furthermore, a detailed analysis of deformation twins revealed that the so called Schmid twins accommodate strain by both twin growth and slip, whereas the non-Schmid twins accommodate the strain exclusively by crystallographic slip.
Volume
944
Subjects
  • Crystal plasticity

  • Deformation twinning

  • Global Schmid factor

  • Mechanical anisotropy...

  • Mg alloys

  • Slip/twin activity

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback