Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication15
  4. Modeling the Influence of Precipitation on L-Band SMAP Observations of Ocean Surfaces Through Machine Learning Approach
 
  • Details
Options

Modeling the Influence of Precipitation on L-Band SMAP Observations of Ocean Surfaces Through Machine Learning Approach

Journal
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN
19391404
Date Issued
2024-01-01
Author(s)
Jin, Xuchen
He, Xianqiang
Shanmugam, Palanisamy 
Ying, Jianyun
Gong, Fang
Zhu, Qiankun
Pan, Delu
DOI
10.1109/JSTARS.2024.3400948
Abstract
A new forward model (FM) was developed to characterize the influence of precipitation on L-band passive ocean surface measurements. The FM, which relates rain-induced brightness temperature (TB) variations to the rain rate and wind speed (WS), was established through a machine learning approach (referred to as the ML-FM). The soil moisture active passive (SMAP) data matched with integrated multisatellite retrievals for global precipitation measurement (IMERG) rain rate data and cross-calibrated multiplatform (CCMP) wind data were binned as a function of the rain rate, WS, and wind direction. The ML-FM was validated by comparing the simulated top-of-atmosphere (TOA) TB values with SMAP measurements. The results showed favorable agreement between the ML-FM outputs and SMAP data, with a root mean square error (RMSE) smaller than 0.55 K for both the horizontal and vertical polarizations. The validation results for ensuring more reasonable rainfall intensity distributions showed that the ML-FM returned stable results with a slightly reduced RMSE of ∼0.75 K for both the horizontal and vertical polarizations. Based on the ML-FM, we found that sea surface emission exhibited significant dependence on the rain rate for both polarizations. In addition, the ML-FM demonstrated signal saturation when the rain rate exceeded 45 mm/h, while precipitation slightly affected the directional characteristics of sea surface emission. These effects accounted for ∼0.3 K at a rain rate of 50 mm/h. Overall, our analyses demonstrated that the proposed ML-FM achieved superior performance in retrieving the TOA TB for both the vertical and horizontal polarizations with a higher accuracy than existing models.
Volume
17
Subjects
  • L-band | microwave re...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback