Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Characterizing energy growth during combustion instabilities: Singularvalues or eigenvalues?
 
  • Details
Options

Characterizing energy growth during combustion instabilities: Singularvalues or eigenvalues?

Date Issued
01-01-2009
Author(s)
Nagaraja, Sharath
Kedia, Kushal
Raman I Sujith 
Indian Institute of Technology, Madras
DOI
10.1016/j.proci.2008.05.035
Abstract
Non-normality in thermoacoustic systems has received attention recently. It has been shown that in a non-normal but classically linearly stable system, there can be significant transient energy growth of small perturbations before their eventual decay. This growth occurs in the absence of non-linear effects. This phenomenon can be explained by the non-normality of the governing linear operator or the non-orthogonality of the eigenvectors of the system. In this paper, we study various aspects of this transient energy growth for a general combustor, with localized heat release approximated by the popular n-r model. Galerkin technique is used to simplify the governing acoustic equations in a duct in the presence of a localized heat source with appropriate boundary conditions. Singularvalue decomposition (SVD) is used to compute the transient energy growth. SVD is used as a tool to obtain the maximum possible energy amplification and the optimal initial conditions required for this amplification. The necessary and sufficient conditions for no energy growth are discussed. A parametric analysis is performed to highlight the effect of system parameters on the maximum transient growth rate and to obtain regions of stability of the thermoacoustic system. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Volume
32 II
Subjects
  • Combustion instabilit...

  • Growth factor

  • Non-normality

  • Pseudospectra

  • Time lag model

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback