Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Finite element analysis and experimental evaluation of residual stress of Zr-4 alloys processed through swaging
 
  • Details
Options

Finite element analysis and experimental evaluation of residual stress of Zr-4 alloys processed through swaging

Date Issued
01-10-2020
Author(s)
Singh, Gaurav
Kalita, Bijit
Vishnu Narayanan, K. I.
Arora, Umesh Kumar
Mahapatra, Manas M.
Jayaganthan, Rengaswamy 
Indian Institute of Technology, Madras
DOI
10.3390/met10101281
Abstract
Zirconium alloy has been extensively used as a cladding material in nuclear power reactors due to its low neutron absorption cross section, excellent mechanical properties, and corrosion resistance. The influence of the swaging parameter, feed rate (0.7, 1.25, 2 m/min) on residual stress induced in Zr-4 alloy is investigated in the present work. A three-dimensional finite element model was implemented in the Deform 3D software to simulate the rotary swaging (RS) process over a circular rod of Zr-4 alloy. The simulation results based on the 3D framework provide a detailed insight of residual stress, true stress versus true strain and force applied over the rod during the multiple pass swaging process; the results are compared with experimental results. The experimental hole drilling method is used to determine the residual stresses on swaged zirconium alloy at different feed rates (0.7, 1.25, and 2 m/min). A similar trend of residual stress between experimental and numerical results from the surface to the center on the swaged rod samples is observed. The same magnitude of residual stress at the surface of the swaged Zr-4 rod is also observed. It is found to be compressive at the surface and tensile in the center of the samples, as observed in the present work.
Volume
10
Subjects
  • Deform 3D

  • FEM

  • Hole drilling

  • Residual stress

  • Rotary swaging

  • Zr-4 alloy

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback