Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Effect of Three-Dimensional Aerodynamics and Dynamic Stall on Lead–Lag Damping of an Isolated Rotor
 
  • Details
Options

Effect of Three-Dimensional Aerodynamics and Dynamic Stall on Lead–Lag Damping of an Isolated Rotor

Date Issued
01-01-2021
Author(s)
Ramanujam, Vellingiri R.
Mohan, Ranjith 
Indian Institute of Technology, Madras
DOI
10.4050/JAHS.66.012007
Abstract
This paper investigates three-dimensional aerodynamic effects due to radial flow on lead–lag damping of a rotor in forward flight conditions. Three-dimensional effects in this study are restricted to yawed flow aerodynamics and radial flow coupling between blade segments. These effects are included in the ONERA dynamic stall model, and lead–lag damping for an isolated torsionally stiff rotor is calculated for different forward flight conditions. This augmented aerodynamic model with three-dimensional effects and Peters–He dynamic wake model improves the correlation of lead–lag damping with experimental data at high advance ratios. The effect of modeling static lift characteristics on damping correlation is also presented. Finally, a modification to the trailing edge separation point–based static lift model for improved yawed flow modeling amenable to aeromechanical stability analysis is proposed.
Volume
66
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback