Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Detection of generalized tonic-clonic seizures using short length accelerometry signal
 
  • Details
Options

Detection of generalized tonic-clonic seizures using short length accelerometry signal

Date Issued
13-09-2017
Author(s)
Kusmakar, Shitanshu
Karmakar, Chandan K.
Yan, Bernard
O'Brien, Terence J.
Muthuganapathy, Ramanathan 
Indian Institute of Technology, Madras
Palaniswami, Marimuthu
DOI
10.1109/EMBC.2017.8037872
Abstract
Epileptic seizures are characterized by the excessive and abrupt electrical discharge in the brain. This asynchronous firing of neurons causes unprovoked convulsions which can be a cause of sudden unexpected death in epilepsy (SUDEP). Remote monitoring of epileptic patients can help prevent SUDEP. Systems based on wearable accelerometer sensors have shown to be effective in ambulatory monitoring of epileptic patients. However, these systems have a trade-off between seizure duration and the false alarm rate (FAR). The FAR of the system decreases as we increase the seizure duration. Further, multiple sensors are used in conjugation to improve the overall performance of the detection system. In this study, we propose a system based on single wrist-worn accelerometer sensor capable of detecting seizures with short duration (≥ 10s). Seizure detection was performed by employing machine learning approach such as kernelized support vector data description (SVDD). The proposed approach is validated on data collected from 12 patients, corresponding to approximately 966h of recording under video-telemetry unit. The algorithm resulted in a seizure detection sensitivity of 95.23% with a mean FAR of 0.72=24h.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback