Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. Stress distributions during fiber pull-out
 
  • Details
Options

Stress distributions during fiber pull-out

Date Issued
01-01-1996
Author(s)
Krishna Kumar, R.
Reddy, J. N.
DOI
10.1115/1.2788864
Abstract
Fiber pull-out resistance is an important mechanism of energy absorption during the failure of fiber-reinforced composite materials. This paper deals with axial stress distribution in the fiber during a pull-out. The frictional constraint between the fiber and the matrix is modeled with a perturbed Lagrangian approach and Coulomb's law of friction. Stress distribution has been determined for three cases, using the finite element method. The first case deals with the pull out of a fully embedded fiber. The second determines the stress distribution during fiber pull-out in the presence of a broken-embedded fiber. The third model attempts to solve the pull out of a coated fiber. The results for the first case compares favorably with those in existing literature. A local “pinching” effect, due to the matrix collapse behind the pulled fiber, is brought out clearly by this model. The second study indicates that the "plug" effect may not be significant in affecting the stress distribution. Lastly, the effects of coating stiffness and thickness are investigated. © 1996 ASME.
Volume
63
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback