Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Specimen level and component level simulations of fatigue crack growth behavior under cyclic bending
 
  • Details
Options

Specimen level and component level simulations of fatigue crack growth behavior under cyclic bending

Date Issued
01-07-2019
Author(s)
Suresh Kumar, R.
Rao, B. N. 
Indian Institute of Technology, Madras
Velusamy, K.
Jalaldeen, S.
DOI
10.3221/IGF-ESIS.49.49
Abstract
This paper describes a benchmark analysis that was performed to demonstrate numerical simulation capability on fatigue crack growth (FCG) behaviour under cyclic bending. Economic design of a piping system against the leak-before-break (LBB) criteria require an accurate estimate of crack growth behaviour. To this end, two representative geometries were selected. The first model was a plate-type geometry with a specimen-type feature, and the other model was a prototype pipe bend geometry with the component feature. The numerically simulated FCG behaviour was found to agree with published data within engineering accuracy for both the specimen-level and the component-level geometries. Details of the FCG simulation, its validation against benchmark data, and plausible reasons the difference observed in the FCG behaviour of the specimen-level and full-scale component-level geometries are presented in this paper. The results of the FCG simulation strengthen the argument for performing component-level FCG simulation for an accurate demonstration of LBB for the power plant piping systems.
Volume
13
Subjects
  • Fatigue Crack Growth

  • Leak-Before-Break

  • Stress Intensificatio...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback