Options
Numerical studies on erosive burning in cylindrical solid propellant grain
Date Issued
01-03-2008
Author(s)
Abstract
This paper addresses erosive burning of a cylindrical composite propellant grain. Equations governing the steady axisymmetric, chemically reacting boundary layer are solved numerically. The turbulence is described by the two equation (k-ε) model and Spalding's eddy break up model is employed for the gas phase reaction rate. The governing equations are transformed and solved in the normalized stream function coordinate system. The results indicate that the dominant reaction zone lies within 20% of the boundary layer thickness close to the wall. The sharp gradient of the temperature profile near the wall is found responsible for bringing the maximum heat release zone near the surface and hence enhancement in the burning rate. The model reproduces the experimental observation that erosive burning commences only above a threshold value of axial velocity. © 2007 Springer-Verlag.
Volume
44