Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Optimisation of a machine loading problem using a genetic algorithm-based heuristic
 
  • Details
Options

Optimisation of a machine loading problem using a genetic algorithm-based heuristic

Date Issued
01-01-2015
Author(s)
Ginoria, Shrey
Samuel G L 
Indian Institute of Technology, Madras
G Srinivasan 
Indian Institute of Technology, Madras
DOI
10.1504/IJPQM.2015.065984
Abstract
In the present work, apart from operating on the structure of a conventional genetic algorithm (GA), a heuristic which uses techniques like differential mutation probability, elitism and local search is used to produce near optimal solutions for large machine loading problems with less computational intensity. Two variants of the machine loading problem are analysed in the present work: single batch model and the multiple batch models. The sensitivity of the problem with respect to the tool capacity constraint is evaluated to find that moderately restricted problems requiring greater computational resources in comparison to lesser restricted and tightly restricted class of problems. The performance of various dispatching rules was compared to infer that the least slack principle fares better than the other tested dispatching rules. It is observed from the results, that the proposed heuristic is efficient in handling large and complex machine loading problems.
Volume
15
Subjects
  • Branch and bound

  • Flexible manufacturin...

  • FMS

  • Genetic algorithm

  • Load balancing

  • Machine loading

  • Tool savings

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback