Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Apparatus and method for the growth of epitaxial complex oxides on native amorphous SiO<inf>2</inf> surface of (001) oriented single crystal silicon
 
  • Details
Options

Apparatus and method for the growth of epitaxial complex oxides on native amorphous SiO<inf>2</inf> surface of (001) oriented single crystal silicon

Date Issued
01-08-2018
Author(s)
Padhan, Prahallad 
Indian Institute of Technology, Madras
Sinha, Umesh Kumar
Sahoo, Antarjami
DOI
10.1063/1.5040390
Abstract
The design, fabrication, and performance of an apparatus for the deposition of complex oxides with highly uniform thicknesses at controllable deposition rates over large area, even on the native amorphous SiO2 layer of (001) oriented single crystal Si, are described. The apparatus makes use of the lateral port of a spherical chamber. The port is maintained at uniform temperature, and it houses a substrate heater. The deposition process is controlled by varying different parameters such as target-to-substrate distance, sputtering power, sputtering gas atmosphere, substrate temperature, and pulsed plasma growth. The system has been tested by growing a series of La0.7Sr0.3MnO3 thin films on Si. The systematic strain relaxation and thus the tunable magnetic properties along with the presence of high-quality surface morphology of the films indicate that the designed system could be used to fabricate different components of oxide electronics-based devices over larger area.
Volume
89
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback