Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Large eddy simulation of bluff body wake in planar shear flow
 
  • Details
Options

Large eddy simulation of bluff body wake in planar shear flow

Date Issued
30-10-2010
Author(s)
Lankadasu, A.
Sankaranarayanan Vengadesan 
Indian Institute of Technology, Madras
DOI
10.1002/fld.2171
Abstract
Large eddy simulation of planar shear flow past a square cylinder has been investigated. Dynamic Smagorinsky model has been used to model subgrid scale stress. The shear parameter, K, namely the nondimensional streamwise velocity gradient in the lateral direction, is 0.0, 0.1 and 0.2. Reynolds number based on the centerline velocity is fixed at Re=21400. The time and span-averaged velocity components, pressure coefficient, Reynolds stresses for uniform are in good agreement with the literature. In shear flow the calculated flow structure and mean velocity components are shown to be markedly different from those of the uniform flow. With increasing shear parameter, the cylinder wake is dominated by clockwise vortices. Both the velocity components in shear flow are compared with respective components in uniform flow. Comparison of normal and shear stresses between shear and no shear case have also been presented. © 2009 John Wiley & Sons, Ltd.
Volume
64
Subjects
  • LES

  • Shear flow

  • Square cylinder

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback