Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Role of Metals and Thiolate Ligands in the Structures and Electronic Properties of Group 5 Bimetallic-Thiolate Complexes
 
  • Details
Options

Role of Metals and Thiolate Ligands in the Structures and Electronic Properties of Group 5 Bimetallic-Thiolate Complexes

Date Issued
08-09-2020
Author(s)
Saha, Koushik
Kaur, Urminder
Raghavendra, Beesam
Ghosh, Sundargopal 
Indian Institute of Technology, Madras
DOI
10.1021/acs.inorgchem.0c01588
Abstract
Syntheses, structures, and electronic properties of group 5 metal-thiolate complexes that exhibit unusual coordination modes of thiolate ligands have been established. Room-temperature reaction of [Cp*VCl2]3 (Cp∗ = η5-C5Me5) with Na5[B(SCH2S)4] led to the formation of [Cp*VO{(SCH2)2S}] (1). The solid-state X-ray structure of 1 shows the formation of six-membered l,3,5-trithia-2-vanadacyclohexane that adopted a chair conformation. In a similar fashion, reactions of heavier group 5 precursors [Cp*MCl4] (M = Nb or Ta) with Na5[B(SCH2S)4] yielded bimetallic thiolate complexes [(Cp*M)2(μ-S){μ-C(H)S3-κ2S:κ2S′,S″}{μ-SC(H)S-κ2C:κ2S,S′′′′}] (3a: M = Nb and 3b: M = Ta). One of the key features of molecules 3a and 3b is the presence of square-pyramidal carbon, which is quite unusual. The reactions also yielded bimetallic methanedithiolate complexes [(Cp*Nb)2(μ-S)(μ-SCH2S-κ2S,S′)(μ,η2:η2-BH3S)] (2) and [(Cp*Ta)2(μ-O)(μ-SCH2S-κ2S,S′)(μ-H){μ-S2C(H)SCH2S-κ2S″:κ2S,S′′′′}] (4). Complex 2 contains a methanedithiolate ligand that stabilizes the unsaturated niobaborane species. On the other hand, one ((mercaptomethyl)thio)methanedithiolate ligand {C2H4S3} is present in 4, which is coordinated to metal centers and exhibits the {μ-κ2S″:κ2S,S′′′′} bonding mode. Along with the formation of 3b and 4, the reaction of [Cp*TaCl4] with Na5[B(SCH2S)4] yielded [(Cp*Ta)2(μ-S){μ-(SBS)S(CH2S)2(BH2S)-κ2B:κ2S:κ4S′,S″,S,S′′′′}] (5) containing a trithiaborate unit (BS3). Complex 5 consists of pentacoordinate boron that resides in a square-pyramidal environment. All the complexes have been characterized by multinuclear NMR, UV-vis spectroscopy, mass spectrometry, and single-crystal X-ray diffraction studies.
Volume
59
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback