Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Understanding drop-pattern formation in 2-D microchannels: A multi-agent approach
 
  • Details
Options

Understanding drop-pattern formation in 2-D microchannels: A multi-agent approach

Date Issued
01-01-2014
Author(s)
Danny Raj, M.
Raghunathan Rengasamy 
Indian Institute of Technology, Madras
DOI
10.1007/s10404-014-1336-8
Abstract
We propose a modeling strategy to simulate drop movement in a two-phase flow inside a 2-D diverging-converging microchannel. These are planar channels that allow 2-D movement of drops. The increasing cross-sectional area of the diverging section decelerates the drop, and the decreasing cross-sectional area of the converging section accelerates it. These drops as they slow down approach each other and start to interact hydrodynamically and form 2-D arrangements inside the microchannel. We propose interacting drop-traffic models, that are phenomenological in nature, to characterize the different interactions of a drop with the neighboring drops, continuous phase and the channel walls. By incorporating these models into a multi-agent simulation, that employs Newton's second law of motion along with the creeping flow approximation, we are able to predict the positions and velocities of all the drops inside the microchannel. The time evolution of the dynamic 2-D patterns formed by the drops inside the microchannel is investigated. We are able to qualitatively understand the features in a microchannel that aid the formation of the 2-D patterns. The simulation strategy helps us to understand the layering phenomena that results in the formation of the 2-D structures near the diverging section and the breaking patterns of drops near the converging section of the microchannel. © 2014 Springer-Verlag Berlin Heidelberg.
Volume
17
Subjects
  • Diverging-converging ...

  • Drop movement

  • Multi-agent approach

  • Phenomenological mode...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback