Options
CuO modified ZnO on nitrogen-doped carbon: a durable and efficient electrocatalyst for oxygen reduction reaction
Date Issued
01-12-2022
Author(s)
Mahato, D.
Gurusamy, T.
Jain, S. K.
Ramanujam, K.
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Abstract
The sluggish nature of oxygen reduction reaction (ORR) and the current use of expensive precious metals (platinum [Pt], palladium [Pd], etc.) are barriers to the commercialization and scale-up of fuel cell and metal-air battery technologies. Given this, the development of low-cost non-precious metal-based electrocatalysts with high activity and durability is an area that requires attention. In this study, we report cupric oxide (CuO) modified zinc oxide (ZnO) supported on nitrogen-doped carbon (CuO/ZnO/NC-600) as a desirable electrocatalyst given its activity in alkaline medium, durability, and low cost. The CuO/ZnO/NC-600 catalyst shows excellent ORR activity with an onset potential and half-wave potential (E1/2) of 0.91 V and 0.80 V vs. reversible hydrogen electrode (RHE), respectively, with outstanding limiting current density of 5.34 mA/cm2. The catalyst also displays excellent methanol tolerance, outstanding stability (90 % current retention after 24 h), and durability (only 18 mV half-wave potential shift after 2000 cyclic voltammetry [CV] cycles). The excellent activity and durability of the catalyst are attributed to the synergistic effect of CuO/ZnO and nitrogen-doped carbon. The structure formation of CuO modified ZnO supported on nitrogen doped carbon (CuO/ZnO/NC-600) catalyst provides the advantages associated with excellent conduction of electrons and a large specific surface area (220 m2/g). These, along with the desirable interfacial charge transfer between CuO and ZnO, aid in obtaining the observed ORR activity in CuO/ZnO/NC-600.
Volume
26