Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. On Morozov's method for tikhonov regularization as an optimal order yielding algorithm
 
  • Details
Options

On Morozov's method for tikhonov regularization as an optimal order yielding algorithm

Date Issued
01-01-1999
Author(s)
Thamban M Nair 
Indian Institute of Technology, Madras
DOI
10.4171/ZAA/868
Abstract
It is shown that Tikhonov regularization for an ill-posed operator equation Kx = y using a possibly unbounded regularizing operator L yields an order-optimal algorithm with respect to certain stability set when the regularization parameter is chosen according to Morozov's discrepancy principle. A more realistic error estimate is derived when the operators K and L are related to a Hilbert scale in a suitable manner. The result includes known error estimates for ordininary Tikhonov regularization and also estimates available under the Hilbert scales approach. © Heldermann Verlag.
Volume
18
Subjects
  • Hilbert scales

  • Ill-posed equations

  • Interpolation inequal...

  • Order-optimal algorit...

  • Tikhonov regularizati...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback