Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium
 
  • Details
Options

Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium

Date Issued
13-10-2020
Author(s)
Rajan, S. Thanka
V V, Anusha Thampi
Terada-Nakaishi, Michiko
Chen, Peng
Hanawa, Takao
Nandakumar, A. K.
Subramanian, B.
DOI
10.1088/1748-605X/aba23a
Abstract
Surface-modified commercially pure titanium (Cp-Ti) with zirconium (Zr)-based thin film metallic glasses (Zr-TFMGs) and ZrO2 thin films were surgically implanted into the tibiae of rats; the bone formation was analyzed to examine the performance of the coatings as a biomaterial. Zr-TFMGs and ZrO2 thin films were coated on Cp-Ti substrates to monitor the control of assimilation in vitro and in vivo. The microstructural and elemental analyses were carried out for the as deposited thin films by x-ray diffraction (XRD), transmission electron microscopy and x-ray photoelectron spectroscopy. TFMG- and ZrO2-coated Ti specimens were immersed in simulated body fluid (SBF) for a period of 21 days to evaluate the calcium phosphate precipitation in vitro. XRD, x-ray photoelectron spectroscopy and scanning electron microscopy/energy dispersive x-ray spectroscopy were used to quantify the mineralization on the coated Zr-TFMG and ZrO2. In vitro corrosion studies showed that the Zr-based TFMG and ZrO2 coatings sustained in the SBF, exhibited superior corrosion resistance to the bare crystalline Ti substrate. Wettability studies showed TFMG and ZrO2 coatings with a hydrophobic nature, and the TFMG-coated SBF-submerged specimens showed a hydrophilic nature. The in vitro cell viability of MC3T3-E1 cells showed good cell proliferation and low cytotoxicity. The calcification deposits were evaluated by staining with alizarin red S, which showed a lower calcium formation on Zr-TFMG compared to ZrO2. The present work also aims to assess the assimilation behavior of Cp-Ti, Zr-TFMG and ZrO2 in vivo by inserting the coated specimen in the femur of rats. After post-implantation of 8 weeks, specimens were examined by micro-CT evaluation. The bone contact ratios as calculated were 72.75%, 15.32% and 38.79%. Consequently, the bone affinity was Cp-Ti wire >ZrO2-coated Ti wire >Zr48Cu36Ag8Al8-coated Ti wire.
Volume
15
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback