Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Dissipative spin dynamics near a quantum critical point: Numerical renormalization group and Majorana diagrammatics
 
  • Details
Options

Dissipative spin dynamics near a quantum critical point: Numerical renormalization group and Majorana diagrammatics

Date Issued
13-10-2011
Author(s)
Florens, S.
Freyn, A.
Venturelli, D.
Rajesh Narayanan 
Indian Institute of Technology, Madras
DOI
10.1103/PhysRevB.84.155110
Abstract
We provide an extensive study of the subohmic spin-boson model with power-law density of states J(ω) ωs (with 0<s≤1), focusing on the equilibrium dynamics of the three possible spin components, from very weak dissipation to the quantum critical regime. Two complementary methods, the bosonic numerical renormalization group and Majorana diagrammatics, are used to explore the physical properties in a wide range of parameters. We show that the bosonic self-energy is the crucial ingredient for the description of critical fluctuations, but that many-body vertex corrections need to be incorporated as well in order to obtain quantitative agreement of the diagrammatics with the numerical simulations. Our results suggest that the out-of-equilibrium dynamics in dissipative models beyond the Bloch-Redfield regime should be reconsidered in the long-time limit. Regarding also the spin-boson Hamiltonian as a toy model of quantum criticality, some of the insights gained here may be relevant for field theories of electrons coupled to bosons in higher dimensions. © 2011 American Physical Society.
Volume
84
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback