Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication12
  4. The superionic Agl-Ag<inf>2</inf>O-V<inf>2</inf>O<inf>5</inf> system: Electrical conductivity studies on glass and polycrystalline forms
 
  • Details
Options

The superionic Agl-Ag<inf>2</inf>O-V<inf>2</inf>O<inf>5</inf> system: Electrical conductivity studies on glass and polycrystalline forms

Date Issued
01-09-1987
Author(s)
Hariharan, K.
Kaushik, Rajiv
DOI
10.1007/BF01161201
Abstract
Superionic conducting glasses in the Agl-Ag2O-V2O5 system were prepared by heating the appropriate amounts of raw materials at 723 K and quenching in liquid nitrogen. The polycrystalline materials were prepared by slowly cooling the melt to room temperature. X-ray diffraction was used for material characterization. The electrical conductivity of the pulverized samples, pressed together with an electrode mixture of silver and electrolyte (1:2 by weight) under 5000 kg cm-2 pressure to form pellets 10 mm in diameter and 2 to 3 mm in thickness, was measured in the temperature range 300 to 365 K at 1 kHz. The ionic conductivities of the glasses were always higher than those of their polycrystalline counterparts, while their activation energies were also slightly higher. Conductivity measurements on annealed glassy samples indicated that the conductivity decreases with the time of annealing, and reaches a constant value which is nearly the same as that of the polycrystalline sample. Electronic conductivities of both types of sample were obtained by using Wagner's polarization cell technique, which showed that the electronic conductivity for both types was five orders of magnitude less than the total conductivity. Typical galvanic cells having the configuration Ag,electrolyte/electrolyte/C,electrolyte,I2 were constructed and the silver ion transport number was calculated by the e.m.f. method. © 1987 Chapman and Hall Ltd.
Volume
22
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback