Options
Assessment of network module identification across complex diseases
Date Issued
01-09-2019
Author(s)
Choobdar, Sarvenaz
Ahsen, Mehmet E.
Crawford, Jake
Tomasoni, Mattia
Fang, Tao
Lamparter, David
Lin, Junyuan
Hescott, Benjamin
Hu, Xiaozhe
Mercer, Johnathan
Natoli, Ted
Narayan, Rajiv
Aicheler, Fabian
Amoroso, Nicola
Arenas, Alex
Azhagesan, Karthik
Baker, Aaron
Banf, Michael
Batzoglou, Serafim
Baudot, Anaïs
Bellotti, Roberto
Bergmann, Sven
Boroevich, Keith A.
Brun, Christine
Cai, Stanley
Caldera, Michael
Calderone, Alberto
Cesareni, Gianni
Chen, Weiqi
Chichester, Christine
Cowen, Lenore
Crawford, Jake
Cui, Hongzhu
Dao, Phuong
De Domenico, Manlio
Dhroso, Andi
Didier, Gilles
Divine, Mathew
del Sol, Antonio
Fang, Tao
Feng, Xuyang
Flores-Canales, Jose C.
Fortunato, Santo
Gitter, Anthony
Gorska, Anna
Guan, Yuanfang
Guénoche, Alain
Gómez, Sergio
Hamza, Hatem
Hartmann, András
He, Shan
Heijs, Anton
Heinrich, Julian
Hu, Xiaozhe
Hu, Ying
Huang, Xiaoqing
Hughitt, V. Keith
Jeon, Minji
Jeub, Lucas
Johnson, Nathan T.
Joo, Keehyoung
Joung, In Suk
Jung, Sascha
Kalko, Susana G.
Kamola, Piotr J.
Kang, Jaewoo
Kaveelerdpotjana, Benjapun
Kim, Minjun
Kim, Yoo Ah
Kohlbacher, Oliver
Korkin, Dmitry
Krzysztof, Kiryluk
Kunji, Khalid
Kutalik, Zoltà n
Lage, Kasper
Lang-Brown, Sean
Le, Thuc Duy
Lee, Jooyoung
Lee, Sunwon
Lee, Juyong
Li, Dong
Li, Jiuyong
Lin, Junyuan
Liu, Lin
Loizou, Antonis
Luo, Zhenhua
Lysenko, Artem
Ma, Tianle
Mall, Raghvendra
Marbach, Daniel
Mattia, Tomasoni
Medvedovic, Mario
Menche, Jörg
Mercer, Johnathan
Micarelli, Elisa
Monaco, Alfonso
Müller, Felix
Abstract
Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the ‘Disease Module Identification DREAM Challenge’, an open competition to comprehensively assess module identification methods across diverse protein–protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.
Volume
16