Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Nanoconfinement Effects on the Kapitza Resistance at Water-CNT Interfaces
 
  • Details
Options

Nanoconfinement Effects on the Kapitza Resistance at Water-CNT Interfaces

Date Issued
23-02-2021
Author(s)
Alosious, Sobin
Kannam, Sridhar Kumar
Sarith P Sathian 
Indian Institute of Technology, Madras
Todd, B. D.
DOI
10.1021/acs.langmuir.0c03298
Abstract
The Kapitza resistance (Rk) at the water-carbon nanotube (CNT) interface, with water on the inside of the nanotube, was investigated using molecular dynamics simulations. We propose a new equilibrium molecular dynamics (EMD) method, also valid in the weak flow regime, to determine the Kapitza resistance in a cylindrical nanoconfinement system where nonequilibrium molecular dynamics (NEMD) methods are not suitable. The proposed method is independent of the correlation time compared to Green-Kubo-based methods, which only work in short correlation time intervals. Rk between the CNT and the confined water strongly depends on the diameter of the nanotube and is found to decrease with an increase in the CNT diameter, the opposite to what is reported in the literature when water is on the outside of the nanotube. Rk is furthermore found to converge to the planar graphene surface value as the number of water molecules per unit surface area approaches the value in the graphene surface and a higher overlap of the vibrational spectrum. A slight increase in Rk with the addition of the number of CNT walls was observed, whereas the chirality and flow do not have any impact.
Volume
37
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback