Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. A negative imaginary approach to modeling and control of a collocated structure
 
  • Details
Options

A negative imaginary approach to modeling and control of a collocated structure

Date Issued
01-01-2012
Author(s)
Bharath Bhikkaji 
Indian Institute of Technology, Madras
Reza Moheimani, S. O.
Petersen, Ian R.
DOI
10.1109/TMECH.2011.2123909
Abstract
A transfer-function is said to be negative imaginary if the corresponding frequency response function has a negative definite imaginary part (on the positively increasing imaginary axis). Negative imaginary transfer-functions can be stabilized using negative imaginary feedback controllers. Flexible structures with compatible collocated sensor/actuator pairs have transfer-functions that are negative imaginary. In this paper a model structure that typically represents a collocated structure is considered. An identification algorithm which enforces the negative imaginary constraint is proposed for estimating the model parameters. A feedback control technique, known as integral resonant control (IRC), is proposed for damping vibrations in collocated flexible structures. Conditions for the stability of the proposed controller are derived, and shown that the set of stabilizing IRCs is convex. Finally, a flexible beam with two pairs of collocated piezoelectric actuators/sensors is considered. The proposed identification scheme is used determining the transfer-function and an IRC is designed for damping the vibrations. The experimental results obtained are reported. © 1996-2012 IEEE.
Volume
17
Subjects
  • Integral resonant con...

  • linear feedback contr...

  • negative imaginary sy...

  • piezoelectric actuato...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback