Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. A Computationally Efficient Rayleigh-Ritz Model for Heterogeneous Oceanic Waveguides Using Fourier Series of Sound Speed Profile
 
  • Details
Options

A Computationally Efficient Rayleigh-Ritz Model for Heterogeneous Oceanic Waveguides Using Fourier Series of Sound Speed Profile

Date Issued
01-06-2022
Author(s)
Chowdhury, A. D.
Subroto Kumar Bhattacharya 
Indian Institute of Technology, Madras
Vendhan, C. P.
DOI
10.1142/S2591728521500158
Abstract
The normal mode method is widely used in ocean acoustic propagation. Usually, finite difference and finite element methods are used in its solution. Recently, a method has been proposed for heterogeneous layered waveguides where the depth eigenproblem is solved using the classical Rayleigh-Ritz approximation. The method has high accuracy for low to high frequency problems. However, the matrices that appear in the eigenvalue problem for radial wavenumbers require numerical integration of the matrix elements since the sound speed and density profiles are numerically defined. In this paper, a technique is proposed to reduce the computational cost of the Rayleigh-Ritz method by expanding the sound speed profile in a Fourier series using nonlinear least square fit so that the integrals of the matrix elements can be computed in closed form. This technique is tested in a variety of problems and found to be sufficiently accurate in obtaining the radial wavenumbers as well as the transmission loss in a waveguide. The computational savings obtained by this approach is remarkable, the improvements being one or two orders of magnitude.
Volume
30
Subjects
  • Fourier series

  • Layered waveguide

  • Normal modes

  • Rayleigh-Ritz approxi...

  • Wave propagation

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback