Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. Wake-boundary layer interaction subject to convex and concave curvatures and adverse pressure gradient
 
  • Details
Options

Wake-boundary layer interaction subject to convex and concave curvatures and adverse pressure gradient

Date Issued
01-12-2001
Author(s)
Tulapurkara, E. G.
Khoshnevis, A. B.
Narasimhan, J. L.
DOI
10.1007/s003480100337
Abstract
Measurements of mean velocity and turbulent quantities have been carried out when the wake of a symmetrical airfoil interacts with the boundary layer on the (i) walls of a straight duct/diffuser and (ii) convex and concave walls of a curved duct/diffuser. The effects of adverse pressure gradient and of curvatures on the interaction are studied separately and in combination. Six cases are considered, viz. with (i) neither pressure gradient nor curvature, (ii) adverse pressure gradient and no curvature, (iii) and (iv) convex curvature with zero and adverse pressure gradients, respectively, (v) and (vi) concave curvature with zero and adverse pressure gradients, respectively. For the flows with curvature, the curvature parameter δ/R is 0.023, and for the flows with adverse pressure gradient, the Clauser pressure gradient parameter β is 0.62. The individual influences of adverse pressure gradient and convex and concave curvatures on the boundary layer are similar to those observed by earlier investigations. It is further observed that the combined effect of concave/convex curvature and the adverse pressure gradient causes higher turbulence intensities than the sum of the individual effects. The effect of curvature is to make the wake asymmetric, and in combination with adverse pressure gradient the asymmetry increases. It is observed that the adverse pressure gradient causes faster wake-boundary-layer interaction. Comparing measurements in a straight duct, a curved duct, a curved diffuser and a straight diffuser, it is seen that the convex curvature reduces the boundary layer thickness. The asymmetry in wake development compensates for this effect and the wake-boundary-layer interaction on a convex surface is almost the same as that on a straight surface. In the case of interaction with the boundary layer on a concave surface, the curvature increases the boundary layer thickness and causes enhanced turbulence intensities. However, the asymmetry in wake is such that the extent of wake is lower towards the boundary layer side. As a result, the wake-boundary-layer interaction on concave surface is almost the same as on a straight surface. The interaction is faster in the presence of adverse pressure gradient.
Volume
31
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback